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LETTER TO THE EDITOR 

Semiclassical approximation as a small-noise expansion 

Antonio Defendiif and Marc0 Roncadellit: 
t Dipartimento di Fisica Nuclme e Teorica, Universith di Pavia, Italy 
t I", Sedone di Pavia, Via A. Bassi 6. I-27100 Pavia, ltaly 

Received 24 July 1995 

Abstract. We discuss how the semiclassical approximation arises within the (classically 
improved) Langevin quantization. We derive a new representadon of the semiclassical 
propagator (at imaginary time) in the form of a white noise average, which is valid over an 
arbitmy (imaginary) time interval. Although OUI result is ultimately equivalent to the standard 
representation of the semiclassical propagator, it nevertheless turns out to be more advantageous 
in dealing with certain problems that involve tunnelling and merastability. 

Thanks to the analytic continuation to imaginary time s = it, quantum mechanics becomes 
a classical probabilistic theory, and so various mathematical techniques from the field of 
classical stochastic processes can be directly employed in the analysis of quantum systems 
[l]. It should be stressed that stochastic differential equations [Z] play a central role in this 
programme. Unfortunately, the application of stochastic differential equations to (imaginary 
time) quantum mechanical problems is quite often doomed to failure from a practical point 
of views, since the conventional stochastic treatment [4] demands the knowledge of an exact 
(nodeless) solution of the original Schriidinger equation. 

A few years ago, a different stochastic formulation of quantum mechanics at s = it 
(Langevin quantization) was proposed [5] and applied successfully to certain time-dependent 
problems [6]. This strategy isfree of the above shortcoming, thereby permitting a systematic 
application to quantum-rfynamical systems of the analytic and numerical methods used in 
connection with stochastic differential equations. Subsequently, a variant of that approach 
has been developed (classically improved Langevin quantization) [7], which exhibits a 
manifest connection with classical mechanics (at s = it). 

Our aim is to discuss how the semiclassical approximation arises within the classically 
improved Langevin quantization. Comments about the relevance of our result will be offered 
toward the end of this letter. Given the illustrative character of the present analysis, we 
shall work throughout in the one-dimensional case, assuming that only a stationary scalar 
potential @ ( x )  is operative. 

Let us begin by cursorily summarizing the structure of the classically improved Langevin 
quantization (in the above-mentioned special case) [7]. The starting point is classical 

5 A remarkable exception to (his statement is represented by N = 2 supersymmerric quantum mechanics in the 
fernionic vacua, where the Langevin equation provides an explicit realiwLion of the Nicolai mapping [3]. 
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mechanics at s = it as formulated a Id Hamilton-Jacobi. Specifically, the Hamilton-Jacobi 
equation reads presentlyt 

a 1 
as 2m 
-S(x ,  s) + -S’(x, s)Z - b(x) = 0. 

In connection with an arbitrary (particular) integral S(X, s) of (l), consider the first-order 
equation that supplies the family of classical trajectories in configuration space as controlled 
by S(x,  s), namely, 

d 1 
-&) ds = -S’(q(s), m s) 

whose solution with initial condition q(s’) = x’ is denoted by q(s ;  x’ ,  s‘; [S(.)])-this is just 
the classical trajectory selected by the initial data q(s’) = x’, p(s’) = S’(x’, s’). Quantization 
is then accomplished by turning (2) into the Lnngevin equation$ 

where q(s) is a Gaussian white noise defined by 

(V(S))? = 0 (r7(s”)q(s’))q = S(s” - s’). (4) 

We denote by .$(s: x’, s’; IS(.), r7(.)]) the solution of (3) with initial condition e@’) = x‘ 
and controlled by S(x,  s)-these solutions describe the quantum randompaths (at imaginary 
time). Finally, the imaginary time quanhm mechanical propagator-in terms of the quantum 
random paths§-is given by the following noise average representation: 

(x”. ~ ’ ’ l x ’ ,  s‘) = exp(-[b(x”, s”) - S(x’, s‘)]pl 
x (S(X” - S(S”; x’, s’; [S(.), ~(.)]))A(S”; x’, s‘; IS(), v(.)])’’’),, (5)  

where we have set11 

(6) 
a 

A@; x’, s‘; [S(.). 7~(.)l) G F O ;  x’, s’; tS(.), I)(-)]). 

Two things about the random path representation (5) should be emphasized. First, 
S(x, s) is an arbitrary solution of (1). Second. the considered procedure is actually valid 
under the additional assumption that S(x, s )  is a single-valued solution of (1). Baning 
fortuitous situations, this condition is”Satisfied by suitably restricting the (imaginary) time 
interval [8,9]. Yet, this is no2 a real limitation. Indeed, (x”, s”1.x’. s’) can first be computed 
within the above constraint by means of (5). Next, the result obtained in this manner can 

t A prime denotes differentiation with respect to X.  

% Observe that the drift is classical and unaffected by the quantization procedure (in sharp contrast to what happens 
in the conventional stochastic treatment [41). 
8 Notice thal the propagator in question is presently denoted by (x”,5”lx’,5’), while it was indicated by 
P(x”. s“lx‘, SI) in [7]. 
I1 Geomeuidy, A(. . .) measures the change of an infinitesimal volume element in configuration space under the 
dynamical flow defined by (3). 
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be extended to arbitrary (imaginary) time intervals, thanks to the convolution property of 
the propagators. 

A great advantage of the classically improved Langevin quantization is that classical 
mechanics (at s = it) manifestly emerges in the limit of vanishing frt. Remarkably enough, 
this circumstance leads, in turn, to a very simple intuitive picture of the semiclassical 
approximation, as we are now going to see. We shall first outline the general scenario, 
which is next shown to lead to the semiclassical expression of the propagator at s = it. 

The basic idea is quite simple. As is clear from the foregoing discussion, afl quantum 
corrections to the classical behaviour are simulated by the Gaussian white noise fluctuations 
in the otherwise classical (3). This fact at once entails that the semiclassical approximation- 
small fr regime--can be understood as the situation in which the noise term in the Langevin 
equation (3) is effectively ‘much smaller’ than the driit (since the former goes like a). 
As a result, the semiclassical random paths (at imaginary timejcontrolled by a generic 
solution S(x, s) of (1)-are provided by the Langevin equation (3) as linearized about 
q(s; x’,  s’; [S( . ) ] ) .  That is to say, we are implementing the semiclassical approximation 
through a smalbnoise expansion [2]-to lowest non-trivial order-as performed on the 
Langevin equation (3). As a preliminary step toward the realization of this strategy, we 
write 

t s d s ;  x‘,  s’; IS(.), v(.)1) = q(s; x’.s’; [S(.)l) + F(s; x’, s’; [S(.) ,  rl(.)I) U) 
because then the function <(. . .) obeys the linear Langevin equation 

On account of (7), equation (8) has to be solved with the initial condition <(sf; . . .) = 0. 
Finding the general integral of (8) is a simple job and ultimately we get# 

<(s; x ‘ ,  s’; IS(.), v(.)1) = (‘>’”Ads; m x‘,  SI; [S(.)l)]du v(u )  A&; x’, s’; [S(.)I)-’ (9) 

with Ao(. . .) denoting just A(. . .)-as defined by (6)-with, however, t(. . .) replaced by 
q(. . .). Observe that the semiclassical random paths controlled by S ( x ,  s) can be viewed as 
fluctuations <(. . .) about the classical trajectory q(. . .) controlled by the same S(x,  s). 

As in the standard small-noise expansion [2], we expect the imaginary time semiclassical 
propagator to arise by inserting the semiclassical random paths (7) into the general 
expression (5). However, we have to be very careful about two features of (5), which are 
not present in the usual Langevin representation of the transition probability for a diffusion 
process§: 

(i) a smooth functional of t(. . .), namely A(. . .), multiplies the delta function under the 

(ii) the quantum random paths t(. . .) obviously depend functionally on S(x,  s). 

t Compare equation (3) with (2). 
$ In the derivation of (9) we used (12) of [71 with e ( .  . .) replaced by q(. . .). 
8 We mean diffusion processes with vanishing killing rare, IO which lhe small-noise expansion is commonly applied 

I’ 

Gaussian noise average, 

PI. 
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Therefore, some additional information is required in order to achieve our goal. As far as 
point (i) is concerned, it is a priori unclear how A(. . .) (equation (5)) should be handled 
(since we might run the risk of incorrectly retaining terms that would produce higher-order 
corrections to the semiclassical approximation). As regard to point (ii), we do not know 
a priori which specific solution S(x, s) of (1) should be used to control the semiclassical 
random paths (while the exact propagator is S(x, s)-independent, there is no reason why this 
circumstance should persist when an approximation is considered). Now, once the quantum 
random paths f ( .  . .) in (5) are replaced by the semiclassical ones &(. . .), the quantity 
A(. . .) in that equation becomes AD(. . .) plus O ( 6 )  corrections (owing to (7) and (9)). 
Because the semiclassical propagator can be regarded as the leading term in the asymptotic 
h-expansion of the exact propagator, we are led to the expectation 

(x",  s"Ix', s ' ) ~ ~  = exp(-[S(x", s") - S(x', s' ) ] /h} .  

X Ao(s"; x', s'; [S( . ) ] ) '" (~(X' '  - ~ S C ( S " ;  x',s'; [S(-), q(.)]))),, . (10) 

In fact, while it should be clear that (10) is indeed the leading-order contribution (in 
h)  to the exact propagator, we still do not know what solution S ( x ,  s) has to be employed. 
Suppose first that S(x,  s) just happens to meet the end-point constraint 

(11) 

Then it is more convenient to write q(s;x',  s'; x", s") and c(s; x',  s'; x", s"; [q(.)]) instead of 
q(s;  x ' ,  s'; [S(.)l) and c(s; x' ,  s'; [S(.), q(.)]),  respectively?. Correspondingly, equation (10) 
can be worked out by standard manipulations$ and the result is 

I ,  q(s"; x', s'; IS(-)]) = x . 

(x", ~ " l x ' ,  S ' ) ~ C  = exp{-S(x", s"; x', ?)/h) 

AD(s"; x',  s'; x", ~ " ) ~ " ( 8 ( ~ ( s " ;  X ' ,  s'; X " ,  S"; [d.)]))),, (12) 

where S(x",s"; x ' ,s ' )  is the time integral of the Lagrangian (at s = it) along 
q(s;  x' .  s'; x", s") for s' < s < s"$. At this point, it is a simple exercise to show11 that 

which turns (12) into the standard representation of the semiclassical propagator (at s = it). 
On the other hand, whenever S ( x , s )  does not satisfy the end-point constraint (11). 
equation (IO) fails to produce the semiclassical propagatory. 

Needless to say, equation (12) is obviously subject to the same limitation as (5). namely 
Is" - s'I should be small enough so as to ensure that the considered solutions S ( x ,  s) are 
single-valued for s' 6 s < s". As a rule-at any given s-focal points [8,9] are the 
branch points of the Lagangian manifold p = S'(x, s) [SI, and so it follows that no focal 

t Analogously. we write Ads: x', SI: x", s") in place of Ads: XI. SI; [S(.)]). 
$ Use the integral (Fourier) represenmion of the delta function and write the noise average as a functional integral. 
Then both integrals are Gaussian and can be done explicitly, leading to (12). 
5 As S(x,  s) obeys the end-point constraint (11). we have S(x". I") = S(d ,  5') + S(x". s": x'. S I )  [9]. 
11 De& will be reported elsewhere. 
1 "his statement can be checked directly on the Schr6dinger equation (at s = 2). 
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points are encountered along q ( s ;  x', s'; x", s") for s' < s < s". This circumstance has 
two important implications. First, the trajectory q(s;  x', s'; x", s") i s  unique, as long as 
s' < s < s". Second, A&; . . .) is strictly positive for s' < s < s" [SI, thereby entailing 
that the semiclassical random paths in question are well defrned (see equation (9)). 

Clearly, a naive extension of (12) to an arbitrary (imaginary) time interval is impossible. 
Apart form the fact that we have no honest starting point, focal points are now expected 
to show up, since ( x ' , ~ ' )  and (x",s") will be joined by several classical trajectories 
q'?(s; x', s'; x". s") (which are labelled by the index a) .  As a~ consequence, A&; . . .) 
vanishes for certain s values within the considered (imaginary) time interval 181, so that 
the relevant semiclassical random paths are hopelessly ill-defined (see equation (9)). Yet, 
it tuns out that such an extension is nevertheless possible and can be derived by means 
of an 'intuitive physical argumentt. Because the semiclassical motion can be understood as 
occuning 'near' the classical trajectory, the superposition principle entails that the desired 
semiclassical propagator should be given by a sum of terms like the right-hand side of (12), 
one for each q'(s; x' ,  s'; x", s"). So, we get 

(x", ~"Ix' ,  s')sc = Cexp{-Sa(x", s"; X I ,  s ' ) / f i }  
0 

x 'rll;(s"; x', s'; X", s")'~~("s"; x', s'; X", s"; [q(.)I))); (14) 
where Sa(. . .), A:(. . .) and <"(. . .) are just S(. . .), A,-,(. . .) and c(. . .) with q(. . .) replaced 
by q"(. . .). Moreover, the expression between quotes in (14) is the function 

A:@; X', s'; X", s " ) ~ / *  (6(cu(s;  X', s'; X", S"; [i7(.)1)))q (15) 

which is well defrned for s' < s Q s*f as continued up to s = s" afer the Gaussian noise 
average has been carried out. Basically, the correctness of (14) rests upon the relation 
A:($; x', s': x", s " ) ~ ~ ( S ( [ ' ( S ;  x', s'; x", s"; [i7(.)l)))v 

(16) TI x=q@ (s:x'.r':x".s") 

azsyx, S; x', SI) 
axax! 

= ( 2 n t i ) - l / z  (- 
whose proof is similar to that of (13). As it stands, equation (14) loob misleading and should 
be understood properly. Let us explain this point. Superficially, the leading contribution in 
the right-hand side of (14) comes from the term controlled by the direcr classical trajectory 
joining (x'.s') with ( x " , ~ " ) ,  namely the one which minimizes the action, and so the 
exponential will be largest. Observe that all points of the direct trajectory are non-focal 
[8,9], hence the corresponding A,(. . .) is strictlypositive [SI. As a consequence. the term in 
question is real. As long as the other terms-controlled by non-direct classical trajectories- 
are also real, they should be dropped from (14) because they are exponentially suppressed 
with respect to the previous one§[lq. Still-depending on the form of the potential @(x)- 
some of the terms in the right-hand side of (14) controlled by non-direct classical trajectories 

t A more rigorous justification will be presented elsewhere. 
$ We define s.(s' < s. < 3'') in such a way that no focal points are encountmed along any q'(s; x', 3'; x", 3'') 
for s' 4 s < s.. Therefore olf Ag(s; . . .) are strictly positive for s' < s < L and the fluctuations t a ( s ;  . . .) are 
correspondingly well defined. 
5 As already Rated, the semiclassical propagator is the leading term in the asymptotic %-expansion of the exnct 
propagator. Therefore, all higher-order corrections have to be discarded. 
11 However, it c& well happen that-because of a certain approximation-~~nitelyely-many terms rum out to have 
an identical exponential prefactor [IO]. In his case, all of them must be retained. 
1 Incidentally, here we have a dramatic simplification as compared to the semiclassical propagator at real time, 
where all terms controlled by non-direcr classical vajectories must be retained (since there is no exponential 
suppression) [SI. 
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can become complex as a result of the abovementioned continuation of the function (15), 
thereby contributing an imaginary part to the semiclassical propagator (at s = it)t-this 
circumstance signals quantum metastability [121. Generally speaking, then only the term 
with largest exponential prefactor should be kept in the imaginary part of (14)t. 

.In conclusion, by working within the classically improved Langevin quantization [7], 
we have been able to derive a new representation ,of the semiclassical propagator-valid 
over an arbirrary (imaginary) time interval-which is in the form of a white noire average. 
Although such a representation is ultimately equivalent to the standard one, it nevertheless 
tuns out to be more advantageous in dealing with certain problems which involve tunnelling 
and metastability. We will describe these applications in forthcoming letters [lo, 111. 
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